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Abstract
This paper introduces and develops a nonlinear theory that extends 

the linear Prandtl Lifting Line theory. Lifting Line theory works well 
for wings with large aspect ratios, but fails for wings with small aspect 
ratios. In the context of Micro Aerial Vehicles (MAVs), the size constraints 
impose a need for wings and control surfaces with small aspect ratios. 
Hence, a nonlinear theory is introduced in this paper. The theory uses 
a system of vortices with variable strength, and using the boundary 
conditions, solves for vortex strength. Using that, we are able to find 
the lift generated by the given surface. I extend this by considering 
control surfaces where the angle of attack is changed and investigate the 
response of lift. This response is then compared with response of general 
aircraft airfoils.

Keywords: Aerodynamics, Lifting line theory, Prandtl’s theory, 
Nonlinear.

Introduction
The intend of this paper is to develop a nonlinear theory that extends 

the classical Prandtl Lifting Line theory. Over the years, there has been 
minimal research into theoretical methods to find the aerodynamic 
characteristics of wings that have low aspect ratio, especially when the 
Prandtl theory does not provide accurate predictions. This is especially 
applicable to the research and development of Micro Aerial Vehicles 
(MAVs) due to their small size and inability to have wings with large 
aspect ratios [1,2]. Furthermore, when considering control surfaces 
on the MAVs, the aspect ratio is definitely limited to low values, to 
maintain size and stealth. However, it is also necessary for MAVs to have 
manoeuvrability to navigate urban environments and gain intelligence. 
Hence, the following nonlinear theory is used for the investigation of the 
response of the coefficient of lift to flap deflections.

Materials and Methods
I have used a similar approach to the nonlinear theory as Bollay 

[3], and have reached the same results, confirmed by the approach to 
Prandtl’s Lifting Line Theory [4] for large aspect ratios.

Assumptions
Let us use a flat rectangular plate for our analysis. The plate will 

have span of b and chord c, at an angle of attack of α, with free stream 
velocity V. So, the component of free stream velocity tangent to the wing 
is Vsin(α) and normal to the wing is Vcos(α). For our analysis, we are 
going to replace the wing with a system of bound and trailing vortices, 
and use the induced velocities to satisfy the boundary condition of no 
flow through the wing, to find the strengths of the vortices. Therefore, we 
make the following assumptions:
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•	 The vortex strength across the span of the wing. 

•	 The downwash is constant across the span and equal 
to the value at the centre of the span. 

Biot-Savart law
We will be using the Biot-Savart law [5] to find the 

induced velocities by the the vortices:

1 2
1 [cos( ) cos( )]

4nv
h

χ
= θ + θ

π
		              (1)

Induced velocity by bound vortices
Now we will find the induces velocities due to the hound 

vortices.
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We need to integrate this with respect to ξ from 
2
c

+  to 
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− , so it becomes:
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As for the boundary condition, the 1 2xv γ
=  when  is 

slightly above zero and 
2 2xv γ
= −  when  is slightly below 

zero.
Now, we can use the following transformation to 

dimensionless coordinates:
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Where γ is the aspect ratio.

Now the induced velocities due to bound vortices in 
terms of the new coordinates equals:

1
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π −ξ γ + − ξ
∫ 		             (7)

1 2xv χ
= 					                 (8)

= − 					                 (9)

Induced velocities by trailing velocities
Now we will investigate the induced velocities due to the 

trailing vortices. Consider the Figure 1.

From it we can derive the following relations:

2 2 2( ) ( ) sin( )
2
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( ) ( )
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x
b x

−ξ θ
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/ 2sin( ) b
h

ψ = 				             (12)

Also, from Biot-Savart Law, we know that

2 sin( )n iv v= ψ 				             (13)

Furthermore, from the geometry of the wing, we can 
deduce that

2
cos( )z nv v= θ 				             (14)

2 2
tan( )x zv v= θ 				             (15)

Now, combining the above information, we obtain the 
following:

Figure  1: Trailing vortex geometry.
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Now, as with the bound vortices, we transform the 
coordinates into non-dimensional coordinates, and we 
obtain:
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2 2
tanx zv v= θ 				              (18)

Now we are in position to formulate the integral equation 
to solve for ( )χ ξ .

The integral equation
As we discussed in Assumptions, we will use the induced 

velocities to satisfy the boundary conditions, and hence 
derive the vorticity strength ( )χ ξ . However, since we are 
only concerned in calculating the total normal force and 
hence the lift coefficient, we will only consider the vortex 
strength at the mean span, since our assumption allows 
such an approach. So the integral equation for the boundary 
condition becomes
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Note that we have used the dimensionless coordinates. 
Now expanding fully and switching the x and ξ  integrals, 
we get
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The integrals Σ1, Σ2 and Σ3 can be evaluated by the 

substitutions xt −ξ
=

γ , ( )sin( )xt −ξ θ
=

γ  and 2 2tan( ) ( )t xθ
= γ + − ξ

γ  
respectively. Consequently, the results are as follows:
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Now we shall assume a reasonable vortex strength 
distribution over the wing, of the form 0

1
1
−ξ

ξ
+ ξ

, and proceed 
to integrate the expressions:
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Now, rearranging the terms, we can evaluate the constant 
0ξ  to obtain the following expression:
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Having integrated the integrals, the final results of that 
analysis is as follows:
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Note that l1 refers to the modified Bessel Function of first 
order [6].

Results and Discussion
Finding the tangent velocity induced across wing

In the linear wing theory, the angle of attack is assumed 
to small enough that the tangential velocity induced by the 
vortices is negligible. However, in our nonlinear theory, the 
velocity induced by the vortices must be taken into account 
in order to calculate the lift generated by the wing. So, to 
find the induced tangential velocity, we need to consider the 
velocity induced by both the bound vortex and he trailing 
vortex. For the bound vortex, the velocity induced at the 
opposite wing tips cancel out to give zero at the mean, which 
is what we are concerned with. For the trailing vortex, there 
is a induced velocity component along the wing equal to 

tant zv v= θ . 

However, we are only concerned with the mean value of 
the velocity as we are going to use it to find the lift generated. 
The mean velocity is therefore

0
2 3[ ]

4tv ξ
= Π −Π

π
				             (39)

[ ]0 ( ) ( ) ( )
4tv A B Cξ

= µ + ν −θ λ
π

		           (40)

From our analysis before, we can rewrite the equation 
above into

1 0sin( ) tan( ) tan( )tv V= α θ −Π θ ξ 		           (41)

Finding the angle of trailing vortex
According to Helmholtz Vortex Law, the vortex follows 

the path of the fluid particles [7], and so, the angle of the 
trailing vortex is the same as the angle of resultant velocity 
vector. However, due to the size and Reynolds number, there 
will be inherent instabilities in the flow after the wing [8]. 
Therefore, we can make the approximation that the angle 
of the vortex right after the trailing edge will suffice for 
our analysis. The angle of the vortex as it leaves the trailing 
edge can be calcuated as follows. We first need to determine 
the mean velocities of the induced velocities. This is done 
by considering a wing of span that is twice the span of our 
current wing. It is trivial to see that due to the fact that only 
the opposite vortex sheet can induce a velocity at the mean 
value. Therefore, the mean velocities are as follows:
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So the resultant velocity vector can be determined as 
such: 
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This is an implicit equation of θ  and can only be solved 
numerically.

Calculating the lift force
In the linear lifting line theory, we were able to calculate 

lift using the Joukowsky-Kutta Theorem, due to the small 
angles of attack assumed. However, for our nonlinear 
analysis, we need to account for the tangential flow across 
the wing to calculate the lift accurately. Therefore the overall 
lift becomes:

( cos( ) ) sec( )xL V v b= ρ α + Γ α 		           (45)

I have omitted the details of the manipulation for the 
sake of clarity. Therefore, after long analysis, the coefficient 
of lift is

0 0
1cos( ) sin( ) tan( ) ( ) tan( )LC

V V
πξ ξ = α + α θ −Π γ θ  

 (46)

Limiting case of γ = ∞
When the aspect ratio tends to infinity, the various terms 

in the lift coefficient take the following values:

1 0.5Π = 					              (47)
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( ) ( ) ( ) 0A B Cµ = ν = λ = 			            (48)

2 sin( )LC = π α 				             (49)

Clearly, this agrees with Prandtl’s Lifting Line Theory.

Limiting case of γ=0 
For the case of zero aspect ratio, the components of the 

formula reduce to the following values:

0γ = 					              (50)

1 0Π = 					              (51)

( )
4

A π
µ = 					              (52)

( ) 0B ν = 					              (53)

( ) 0C λ = 					              (54)

0 4 sin( ) tan( )
V
ξ

= α θ
π

			            (55)

2cot( ) 1tan( ) cot 2
2 2
α

θ = − + + 		           (56)

Therefore, the lift force now becomes

22sin ( )LC = α 				             (57)

This is a very interesting result, and it corresponds to the 
solution using momentum theory applied to Newtonian flat 
plate, where the induced force due to momentum change of 
the particles is 2sin ( )α .

Using nonlinear theory for flap deflections
Flap configuration: Given the flap configuration in 

Figure 2, we shall approximate the overall lift to be

2 21 1
2 2wing flapL L flapL C V bc C V bc   

   


= ρ


+ ρ
 

 (58)

Calculation of overall lift coefficient: We know 
from our nonlinear analysis that ( ), ( )ξ α θ α are the only 
functions dependent on the angle of attack. So letting the 
angle of attack of the flap be fα + δ , we obtain the overall 
lift coefficient:

We shall define the flag chord ratio as flap

flap

c
k

c c
=

+
. 

The total lift coefficient becomes

( ) ( )(1 ) ( )
wing flapL L L fC C k C kα = α − + α + δ   (59)

Computation of L

f

C∂
∂δ

 

The only term that contributes to the aerodynamic 
derivative is flapLC . Hence, to compute the aerodynamic 
derivative, we need to find flapLC′ . This was done using 
Mathematica, and the results are in Figure 3.

Comparing with wings of different high aspect ratio
Since for MAVs, we cannot effectively have a tail with 

elevators [9,10], due to the downwash effect and lack of size 
to design in a way that avoids the downwash from the wing, 
we are forced to use the ailerons and flaps for both lateral 
and longitudinal control. Hence, it is important to compare 

LC
δ

 with our results. We get values for LC
δ

 as 5.70, which 
is much bigger than our results for low aspect ratio wings 
[11]. It can be inferred that due to this, the deflections 
required by the low aspect ratio wings and control surfaces 
will be much greater and elicit much different control 
systems to implement such deflections. An issue would be 
the behaviour of the control surfaces at high angles of attack, 
but that is beyond the scope of this research.

Conclusion
Overall, we have used the nonlinear modified version 

of Prandtl’s Lifting Line Theory to derive the lift coefficient 
of low aspect ratio wings. The results concur with classical 
lifting line theory for high aspect ratios. Furthermore, this 
method is useful in designing control surfaces such as flaps 
for MAVs due to their size restriction [12].

Figure  2: Flap configuration.
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Figure  3: flapLC′  vs Aspect ratio.
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