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Spinal cord injury (SCI) is a devastating condition that can arise from 
mechanical trauma to the spinal cord, or from a variety of non-traumatic 
insults, such as infection, oncogenesis, birth trauma, and electrocution 
[1]. Regardless of the cause, SCI will result in either complete or partial 
loss of motor and sensory function below the lesion site [2], as well 
as some degree of autonomic dysfunction [3]. SCI will often result in 
severe loss of tissue and varying degrees of functional impairment, and, 
after SCI, the spinal cord exhibits only limited repair [4]. This can have 
debilitating effects on the quality of life, and even the life expectancy, of 
SCI patients [5].

In the adult population, the majority of SCI results from motor vehicle 
accidents (MVA) [6]. In infants and children, the common causes of SCI 
include trauma, resulting from MVA and sports injury, but also from 
infections, neoplasms, congenital malformations, and birth trauma [7]. 
The majority of SCI occur at the cervical level [2], resulting in more severe 
autonomic dysfunction and a greater loss of function in the body than a 
similar injury lower in the cord. SCI has a high cost to the community, 
both financially and socially, although there is a lack of accurate 
epidemiological data available in many countries [1]. A 2007 estimate of 
the global incidence of spinal cord injury resulting from trauma (TSCI) 
was 23 cases per million population each year [1]. Less is known about 
pediatric SCI, as it is rarer, accounting for only 1-13% of all SCI [7-10]; 
however, pinning down an exact figure is difficult as different studies 
use different age ranges and different parameters to assess the injury 
based on hospital admissions, ASIA score and associated co-morbidities 
[7-10]. In the pediatric SCI population, the majority of injuries result 
from non-traumatic SCI, with traumatic spinal cord injury (TSCI) being 
much less common [7].

SCI has a biphasal pathophysiology consisting of the primary, 
immediate injury and a prolonged, exacerbating secondary injury phase 
[18-21]. There is little that can be done in the primary injury phase and 
the secondary damage phase of SCI is complex and changes over time, 
making it difficult to identify a simple therapeutic target to alleviate its 
detrimental effects. This injury phase involves multiple mechanisms and 
systems, not the least of which is the inflammatory response, however we 
still have little understanding of how these may differ between mature 
and pediatric patients and animal models. The inflammatory response 
plays a significant role in the profile of the microenvironment of the 
lesion after SCI, as do the actions of reactive astrocytes and activated 
endogenous microglia [22]. This basic pathophysiology is common to SCI 
in both adult and developing cords. The majority of SCI research has been 
carried out in animal models with a variety of different mammals used 
in adult models, including non-human primates. Pediatric models have 
used pigs [23], cats [24-26], and possums [27] as well as the common use 
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of mice [28-30] and rats. This has given a broad view of the 
similar response in a wide range of mammals, although little 
has been corroborated in humans. However, as mammals, 
it is thought that humans will exhibit a similar response 
to that of the experimental animals used in research [31]. 
The developing spinal cord exhibits significant difference to 
the fully developed adult cord in a variety of aspects, from 
biomechanical [32-34], cellular and structural [23,35,36] to 
molecular [28,37-39]. There is also a trend for infants having 
a better recovery from analogous injury than their adult 
counterparts, that bears greater scrutiny [14,32,35,40,41].

All of this causes some difficulty in exploring SCI in the 
pediatric population experimentally. Despite the prevalence 
of non-traumatic SCI in the pediatric population the vast 
majority of work exploring pediatric SCI is performed using 
traumatic models of injury. This is due to the complexities in 
creating an infant model; traumatic models are logistically 
easier, more readily reproducible and comparable to similar 
models in adults. We also have only a limited understanding 
of the analogous ages between the model animals and 
human development, as well as the developmental timing. 
The developmental timing, and especially the landmark 
development stages, are poorly understood in our model 
animals which creates difficulty in aligning these models 
with the same landmarks in human development. This 
alignment is necessary to account for the impact that the 
development of the spinal cord, CNS and exogenous systems 
is having on the response to a SCI in the pediatric population. 
To further validate these models, allow for greater utility in 
studying the pathophysiology of SCI and for the development 
of potential therapies a deeper understanding of the model 
animals themselves is essential. 

The ‘normal’ behavior of infant and neonatal animals 
is inherently different to that in fully developed adults, 
and changes with different stages of development, which 
also adds another layer of complexity to analyzing models 
of pediatric SCI. In a pediatric model of SCI, it is hard to 
accurately ascertain where development ends and recovery 
begins. Very little is known about how much of an impact 
the developmental state and plasticity of young spinal cords 
has on injury recovery and the potential of ‘rewiring’ around 
the injury. This is further complicated by the presence of 
central pattern generation in the spinal cord. Central pattern 
generation allows for the development of reflex movements, 
without significant input from descending pathways and is 
common in infant animals. This complicates the assessment 
of locomotor function in these animals after injury. 

SCI in the pediatric population may be rarer, however 
it is an injury that incurs literally ‘life-long’ ramifications. 
Unfortunately, we still understand very little about how 
the developing spinal cord responds to injury, or how the 
state of development affects this response. Pediatric SCI 
is quite a unique injury and therefore presents unique 
challenges on a clinical level, as well as ongoing challenges 
for the patient due to its great effect on ongoing physical and 
psycho-social development [42]. Injury presentation and 
aetiology of pediatric SCI is different to that in mature adults 
on a basic and clinical level, and a greater understanding of 

the mechanisms behind SCI in younger subjects is needed 
to assist in the clinical management of these patients. 
The development of clinically relevant animal models is 
challenging and still requires substantial exploration. While 
current traumatic SCI models have found some promising 
avenues of research and a trend of better recovery in younger 
animals the developmental and behavioral complexities 
inherent in a pediatric model of SCI need to be addressed. 
And finally, a greater effort needs to be devoted to finding 
models to understand the progression of non-traumatic 
injuries as well as the post-injury sensory and autonomic 
impacts.
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