
Inno
Journal of Multidisciplinary
Research and Reviews

Volume 2: 1
J Multidis Res Rev 2020

Speeding up the Karatsuba Algorithm

Satish Ramakrishna*

Kamesh Aiyer

Department of Physics & Astronomy, Rutgers, the State University of New
Jersey, USA
Kashi Software Inc, UAS

Article Information
Article Type: Research
Article Number: JMRR121
Received Date: 20 November, 2019
Accepted Date: 27 December, 2019
Published Date: 03 January, 2020

*Corresponding Author: Satish Ramakrishna, Department
of Physics and Astronomy, Rutgers, the State University
of New Jersey, 136 Frelinghuysen Road Piscataway,
NJ 08854-8019, USA. Tel: +1-646-860-4691; Email:
sr1087(at)physics.rutgers.edu

Citation: Ramakrishna S, Aiyer K (2020) Speeding up the
Karatsuba Algorithm. J Multidis Res Rev Vol: 2, Issu: 1
(01-03).

Copyright: © 2020 Ramakrishna S. This is an open-
access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Abstract
The Karatsuba method was the first published attempt to speed up the

multiplication of two numbers [1]. It is well-known to be of complexity
∼ O(nlog

2
3). There are currently, improved mathematical algorithms that

surpass this algorithm in complexity [2-7].

While it does not seem possible to improve upon the basic mechanism
of the Karatsuba technique and we demonstrate why it is the most
efficient of its type, it is possible that one can improve its implementation
for particular decile ranges of numbers. This article presents an approach
to speed up the implementation of the Karatsuba technique, utilizing
extra memory to supplement the original method. While the method is
conceptually similar to the “Method of Four Russians” technique used to
speed up Matrix Multiplications, it applies the concept in a different area.

The Karatsuba algorithm [1,2], an ∼ O(nlog
2

3) technique to multiply
two n-digit numbers, has been surpassed by newer techniques that are
O(n×log n×log log n) [3-7] and O(n×log n) [8] respectively. However,
the simplicity of the algorithm allows improvements that are easily
implemented and can be reduced to fewer multiplications, supplemented
by look-ups.

Keywords: Karatsuba algorithm, Method of Four Russians, Matrix
multiplications, Complexity.

The Karatsuba Algorithm
For simplicity, consider multiplying two n-digit numbers x and y,

written as

0 110mx x x= +

y = y0 + y110m (1)

where for simplicity, we use 2kn = ,
2
nm = and work in base-10. The

product can be simplified to

() 2
0 0 0 1 1 0 1 1. 10 10m mx y x y x y x y x y= + + × +

() 2
0 0 0 1 0 1 0 0 1 1 1 110((0) 1)= + + + − − × +m mx y x x y y x y x y x y (2)

so that the product of the n-digit numbers can be reduced to the
multiplication of three independent m-digit (and occasionally m+1-digit)
numbers, instead of four m-digit numbers. Note that multiplications by
10 are ignored in the complexity calculations, since they can be reduced
to decimal point shifts before additions. Also, as a general principle, the
complexity calculation ignores the number of additions, since they are
sub-dominant in complexity. The order of magnitude (“complexity”) of
the number of separate multiplications to multiply these two numbers
can be reduced to the relation

www.innovationinfo.org

J Multidis Res Rev 2020 02

() () () 2log 3() 3 (
2

) nn O n n O n= + → ∼M M M (3)

The Karatsuba technique is sometimes referred to as the
“divide-by-two-and-conquer” method.

An alternative approach to computing the complexity
above is as follows. At every step, the starting number
(initially n = 2s digits long) is split into two numbers with
half the number of digits. After s steps, it is easy to see that 3s
multiplications of single-digit numbers need to be performed.
This number, the number of multiplications required, can
be written as 33 3 2 2s log n logn= = ; hence the above complexity
result. This calculation is exact (as explained above) for a
number with a power of 2 as the number of digits.

The Improved Version
We generalize the Karatsuba divide-by-two-and-conquer

algorithm as follows and write (in base-B)
2

0 1 2 ...m m Nm
Nx x x B x B x B= + × + × + + ×

y = y0 + y1 × Bm + y2 × B2m + ... + yN × BNm (4)

As can be quickly checked, each of the numbers x0, ..., xN ,
y0, ..., yN are m-digits long and (N + 1)m = n where n is the total
number of digits in x and y.

The number of multiplications required to multiply x
and y, i.e., the order of complexity, is

2 2

2

(1)(1) _ (1,2)
2 2

NN C N n
m

+
= + ∼ ∼+M

individual products of m-digit (and occasionally m+1-digit)
numbers. For instance, if N = 1, as in the usual Karatsuba
technique, M = 2 + 1 = 3 which is what we use in the order-
of-magnitude estimate in Equation (3).

In the Karatsuba technique, the m(= 2) digit numbers
are further multiplied by the same technique, carrying on
recursively till we are reduced to single-digit multiplications.
That leads to the recursive complexity calculation noted in
Equation (3).

However, note that if we simply pre-computed the
individual m-digit multiplications and looked up the
individual multiplications, we end up with essentially

2

22
∼

n
m lookups rather than actual multiplications. Indeed,

lookups take, on average, 1/5 the time taken for single- digit
multiplication (and then we have to multiply by the number
of operations L required to perform the lookup), hence the
complexity when lookups are added are 2

22
n L
m

∼ ∼ in comparison
with the Karatsuba method. As we will show below, L ∼ 6m,
so that the total complexity of the algorithm is

2n
m

∼ . If m were
chosen to be a fraction of n, i.e., , the complexity is ∼
(N + 1)n. When compared to the Karatsuba technique, this is
much quicker than n1.58. This is the main result of this short
note.

The lookups of m-digit multiplications need to be
performed against a table of size Bm × Bm. This lookup, as can
be verified by standard binary-search techniques, is (for B =
10) of complexity 2

2 2log (10) 2 log 10 6m m m∼ = ∼ . There are some
additional additions and subtractions, which add additional
(though sub-dominant) complexity n

m
∼ as can be easily

checked and are detailed in the below example.

Analyzing this further, we could choose to mix and match
in two different ways, i.e.,

1. We could apply k Karatsuba-style divide-by-two-and-
conquer steps, then apply the lookup method to look-up 3k
pre-calculated products of

2k

n digits or

2. We could use the (N + 1) = 2k-block technique (break-up
into m digit blocks) with

2k

nm = , we’d have to look-up 2k +
C(2k, 2) products.

It is clear that 3k < 2k + C (2k, 2), so the divide-by-two-and-
conquer strategy yields fewer lookups - it is the quickest
way to speed up the calculation. A graph of the reduced
com- plexity (essentially -23 ()

3
N N k) achieved this way is

plotted in Figure 1 - clearly, cutting the recursion off early is
advantageous.

A little reflection will show why divide-and-conquer by
2 for k times followed by lookup is the most efficient way
to carry out the above procedure, in fact it is illustrative for
it demonstrates why the Karatsuba technique is the most
efficient of the divide-and-conquer techniques. Each time
we divide an n-digit number into N + 1 blocks of m-digits,
we have to (recursively) perform (N + 1) + C(N + 1, 2)
multiplications. After k such recursions, we are left with (N
+ 1)k blocks of (1)k

n
N + n digits each and have to perform ((N

+ 1) + C(N + 1, 2))k multiplications. At this point, if we look
up pre-computed products of numbers of this type, that is a
complexity factor of (1)k

n
N

∼
+ . The total number of operations is

k(1) (1,2)) (1)
(1) 2

k
k

n NN C N n
N

∼ (+ + + × = +
+

 which is smallest for smallest N , i.e., N = 1. The complexity
then matches exactly the complexity of the Karatsuba
algorithm.

A Numerical example
The above arithmetic is demonstrated in the case below

for N = 4, where we have used n = 5m,
2 3 4

0 1 2 3 4
m m m mx x x B x B x B x B= + + + +

2 3 4
0 1 2 3 4

m m m my y x B y B y B y B= + + + + (5)

which leads to the product
()

()
() ()
() ()
()

0
0 0 0 1 0 1 0 0 1 1

2
0 2 0 2 0 0 2 2 1 1

3
0 3 0 3 0 0 3 3 1 2 1 2 1 1 2 2

4
0 4 0 4 0 0 4 4 1 3 1 3 1 1 3 3 2 2

5
1 4 1 4 1 1

(())

(())

(() ())

(() ())

(

.

()

m

m

m

m

m

x y B x y B x x y y x y x y

B x x y y x y x y x y

B x x y y x y x y x x y y x y x y

B x x y y x y x y x x y y x y x y x y

B x x y y x y

= + + + − −

+ + + − − +

+ + + − − + + + − −

+ + + − − + + + − − +

+ + + − − ()
()()()
() ()

4 4 2 3 2 3 2 2 3 3

6
2 4 2 4 2 2 4 4 3 3

7 8
3 4 3 4 3 3 4 4 4 4

())

(()

)

m

m m

x y x x y y x y x y

B x x y y x y x y x y

B x x y y x y x y B x y

+ + + − −

+ + + − − +

+ + + − − +

 (6)

As can be observed, this expression has 5 + C(5, 2) =
15 independent products that can be pre-computed, i.e..,
the 5 simple products x0y0, x1y1, x2y2, x3y3, x4y4 and the 10
combination products (x0 +x1)(y0 +y1), (x0 +x2)(y0 +y2), (x0 +x3)
(y0 +y3), (x0 +x4)(y0 +y4), (x1 +x2)(y1 + y2), (x1 +x3)(y1 +y3), (x1
+x4)(y1 +y4), (x2 +x3)(y2 +y3), (x2 +x4)(y2 +y4), (x3 +x4)(y3 +y4).

If these products are found in a pre-computed table
of m and (m + 1)-digit numbers, we would not need any
multiplications at all, just 15 lookups, for any m, with n = 5m.

We would need to perform additions and subtractions, of
course and there are 34 of them in the above example - this number
of elementary operations depends, however, only upon n

m
.

www.innovationinfo.org

J Multidis Res Rev 2020 03

Memory Requirements
Typical RSA encryption algorithms use ∼ 1000-digit

base-10 composite numbers that are the product of five-
hundred-digit primes. If one were to attack the problem
by pre-computing keys, i.e., pre-multiplying pairs of five-
hundred-digit primes (n = 500 ∼ 29) and storing the results
of multiplying all possible 6-digit numbers (m = 6 ∼ 23), one
has a complexity 2

8 42 005 ,5n n
m

∼ ∼= , which is worse than the new ∼
n log2n ∼ 4500 complexity [8], albeit the fact that the newer
approach also has multipliers, which we have not accounted
for. If we use the hybrid method (Karatsuba followed by look-
up of 6-digit products), the complexity is ∼ 36 × 6 ∼ 4200,
which is arguably much better (no pre-factors missing) than
even the n log2n algorithms. We would need to store ∼ 1012
twelve-digit numbers, roughly 20 TB of memory, which is a
reasonable size.

Conclusion
This paper presents a rapid pre-computed approach

to speeding up multiplications. Though one needs to pre-
compute and store all possible m-digit multiplications, one
can compute the products of two integers with number of
digits equal to any integer times m in time proportional to
the number of digits (times the afore-mentioned integer).
Memory is cheaper than CPU-speed, so this is a method that
can be exploited in other (for instance signal-processing)
situations to speed up intensive calculations too.

Useful conversations are acknowledged with Dr. B.
Kumar. As this paper was being prepared, an article about
using pre-stored calculations was released, where the
Eratosthenes sieve was sped up in calculation complexity
[9,10].
References
1. Karatsuba An, Ofman Yu (1962) Multiplication of Many-Digital Numbers

by Automatic Computers. Doklady Akademii Nauk SSSR 145: 293-294.

2. Karatsuba AA (1995) The Complexity of Computations. Proceedings of
the Steklov Institute of Mathematics 211: 169-183.

3. Scho¨nhage A, Strassen V (1971) Schnelle Multiplikation großer Zahlen.
Computing 7: 281-292.

4. Toom A (1963) The Complexity of a Scheme of Functional Elements
Realizing the Multiplication of Integers. Soviet Mathematics–Doklady 3:
714-716.

5. Cook SA (1966) On the Minimum Computation Time of Functions.
Harvard University Cambridge, MA.

6. Dutt A, Rokhlin V (1993) Fast Fourier transforms for nonequispaced
data. SIAM J Sci Comput 6: 1368.

7. Fu¨rer M (2007) Faster integer multiplication. Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, ACM, New York.

8. Harvey D, Van Der Hoeven J (2019) Integer Multiplication in time O(n ×
log n). CCSD.

9. Helfgott HA (2019) An improved sieve of Eratos- thenes. Mathematics of
Computation 89: 333-350.

10. Arlazarov V, Dinic E, Kronrod M, Faradˇzev I (1970) On economical
construction of the transitive closure of a directed graph. Doklady
Akademii Nauk SSSR 194: 487-488.

Fraction of Karatsuba
100 digit binary numbers, stopping early followed by look-up

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%
0 20 40 60 80 100 120

Figure 1: Plot of the Efficiency of cutting off Karatsuba early.

Citation: Ramakrishna S, Aiyer K (2020) Speeding up the Karatsuba Algorithm. J Multidis Res Rev Vol: 2, Issu: 1 (01-03).

http://www.mathnet.ru/links/c035bebb79aa258c6a1dff36ab6f10a5/dan26729.pdf
http://www.mathnet.ru/links/c035bebb79aa258c6a1dff36ab6f10a5/dan26729.pdf
https://www.innovationinfo.org/journal-of-multidisciplinary-research-and-reviews/articles_inpress
https://www.innovationinfo.org/journal-of-multidisciplinary-research-and-reviews/articles_inpress
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF02242355
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2FBF02242355
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=167007
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=167007
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=167007
https://www.ams.org/journals/tran/1969-142-00/S0002-9947-1969-0249212-8/S0002-9947-1969-0249212-8.pdf
https://www.ams.org/journals/tran/1969-142-00/S0002-9947-1969-0249212-8/S0002-9947-1969-0249212-8.pdf
https://doi.org/10.1137/0914081
https://doi.org/10.1137/0914081
https://doi.org/10.1145/1250790.1250800
https://doi.org/10.1145/1250790.1250800
https://hal.archives-ouvertes.fr/hal-02070778
https://hal.archives-ouvertes.fr/hal-02070778
https://doi.org/10.1090/mcom/3438
https://doi.org/10.1090/mcom/3438
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=35675&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=35675&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=35675&option_lang=eng

	Title
	Article Information

