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Abstract
The Karatsuba method was the first published attempt to speed up the 

multiplication of two numbers [1]. It is well-known to be of complexity 
∼ O(nlog

2
3). There are currently, improved mathematical algorithms that 

surpass this algorithm in complexity [2-7].

While it does not seem possible to improve upon the basic mechanism 
of the Karatsuba technique and we demonstrate why it is the most 
efficient of its type, it is possible that one can improve its implementation 
for particular decile ranges of numbers. This article presents an approach 
to speed up the implementation of the Karatsuba technique, utilizing 
extra memory to supplement the original method. While the method is 
conceptually similar to the “Method of Four Russians” technique used to 
speed up Matrix Multiplications, it applies the concept in a different area.

The Karatsuba algorithm [1,2], an ∼ O(nlog
2

3) technique to multiply 
two n-digit numbers, has been surpassed by newer techniques that are 
O(n×log n×log log n) [3-7] and O(n×log n) [8] respectively. However, 
the simplicity of the algorithm allows improvements that are easily 
implemented and can be reduced to fewer multiplications, supplemented 
by look-ups.

Keywords: Karatsuba algorithm, Method of Four Russians, Matrix 
multiplications, Complexity.

The Karatsuba Algorithm
For simplicity, consider multiplying two n-digit numbers x and y, 

written as

0 110mx x x= +

y = y0 + y110m          (1)

where for simplicity, we use 2kn = , 
2
nm =  and work in base-10. The 

product can be simplified to 

( ) 2
0 0 0 1 1 0 1 1.    10 10m mx y x y x y x y x y= + + × +

( ) 2
0 0 0 1 0 1 0 0 1 1 1 110( ( 0) 1)= + + + − − × +m mx y x x y y x y x y x y         (2)

so that the product of the n-digit numbers can be reduced to the 
multiplication of three independent m-digit (and occasionally m+1-digit) 
numbers, instead of four m-digit numbers. Note that multiplications by 
10 are ignored in the complexity calculations, since they can be reduced 
to decimal point shifts before additions. Also, as a general principle, the 
complexity calculation ignores the number of additions, since they are 
sub-dominant in complexity. The order of magnitude (“complexity”) of 
the number of separate multiplications to multiply these two numbers 
can be reduced to the relation
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( ) ( ) ( ) 2log 3( )  3   ( 
2

) nn O n n O n= + → ∼M M M              (3)

The Karatsuba technique is sometimes referred to as the 
“divide-by-two-and-conquer” method.

An alternative approach to computing the complexity 
above is as follows. At every step, the starting number 
(initially n = 2s digits long) is split into two numbers with 
half the number of digits. After s steps, it is easy to see that 3s 
multiplications of single-digit numbers need to be performed. 
This number, the number of multiplications required, can 
be written as 33  3 2 2s log n logn= = ; hence the above complexity 
result. This calculation is exact (as explained above) for a 
number with a power of 2 as the number of digits.

The Improved Version
We  generalize the Karatsuba divide-by-two-and-conquer 

algorithm as follows and write (in base-B)
2

0 1 2 ...m m Nm
Nx x x B x B x B= + × + × + + ×

y = y0 + y1 × Bm + y2 × B2m + ... + yN × BNm              (4)

As can be quickly checked, each of the numbers x0, ..., xN , 
y0, ..., yN are m-digits long and (N + 1)m = n where n is the total 
number of digits in x and y.

The number of multiplications required to multiply x 
and y, i.e., the order of complexity, is 

2 2

2

( 1)( 1) _ ( 1,2)
2 2

NN C N n
m

+
= + ∼ ∼+M  

individual products of m-digit (and occasionally m+1-digit) 
numbers. For instance, if N = 1, as in the usual Karatsuba 
technique, M = 2 + 1 = 3 which is what we use in the order-
of-magnitude estimate in Equation (3).

In the Karatsuba technique, the m(= 2) digit numbers 
are further multiplied by the same technique, carrying on 
recursively till we are reduced to single-digit multiplications. 
That leads to the recursive complexity calculation noted in 
Equation (3).

However, note that if we simply pre-computed the 
individual m-digit multiplications and looked up the 
individual multiplications, we end up with essentially 

2

22
∼

n
m  lookups rather than actual multiplications. Indeed, 

lookups take, on average, 1/5 the time taken for single- digit 
multiplication (and then we have to multiply by the number 
of operations L required to perform the lookup), hence the 
complexity when lookups are added are 2

22
n L
m

∼ ∼  in comparison 
with the Karatsuba method. As we will show below, L ∼ 6m, 
so that the total complexity of the algorithm is 

2n
m

∼ . If m were 
chosen to be a fraction of n, i.e., , the complexity is ∼ 
(N + 1)n. When compared to the Karatsuba technique, this is 
much quicker than n1.58. This is the main result of this short 
note.

The lookups of m-digit multiplications need to be 
performed against a table of size Bm × Bm. This lookup, as can 
be verified by standard binary-search techniques, is (for B = 
10) of complexity 2

2 2log (10 ) 2 log 10 6m m m∼ = ∼ . There are some 
additional additions and subtractions, which add additional 
(though sub-dominant) complexity n

m
∼  as can be easily 

checked and are detailed in the below example.

Analyzing this further, we could choose to mix and match 
in two different ways, i.e.,

1. We could apply k Karatsuba-style divide-by-two-and-
conquer steps, then apply the lookup method to look-up 3k 
pre-calculated products of 

2k

n  digits or

2. We could use the (N + 1) = 2k-block technique (break-up 
into m digit blocks) with 

2k

nm = , we’d have to look-up 2k + 
C(2k, 2) products.

It is clear that 3k < 2k + C (2k, 2), so the divide-by-two-and-
conquer strategy yields fewer lookups - it is the quickest 
way to speed up the calculation. A graph of the reduced 
com- plexity (essentially -23 ( )

3
N N k ) achieved this way is 

plotted in Figure 1 - clearly, cutting the recursion off early is 
advantageous.

A little reflection will show why divide-and-conquer by 
2 for k times followed by lookup is the most efficient way 
to carry out the above procedure, in fact it is illustrative for 
it demonstrates why the Karatsuba technique is the most 
efficient of the divide-and-conquer techniques. Each time 
we divide an n-digit number into N + 1 blocks of m-digits, 
we have to (recursively) perform (N + 1) + C(N + 1, 2) 
multiplications. After k such recursions, we are left with (N 
+ 1)k blocks of ( 1)k

n
N +  n digits each and have to perform ((N 

+ 1) + C(N + 1, 2))k multiplications. At this point, if we look 
up pre-computed products of numbers of this type, that is a 
complexity factor of ( 1)k

n
N

∼
+ . The total number of operations is

k( 1) ( 1,2)) (1 )
( 1) 2

k
k

n NN C N n
N

∼ ( + + + × = +
+

 which is smallest for smallest N , i.e., N = 1. The complexity 
then matches exactly the complexity of the Karatsuba 
algorithm.

A Numerical example
The above arithmetic is demonstrated in the case below 

for N = 4, where we have used n = 5m,
2 3 4

0 1 2 3 4
m m m mx x x B x B x B x B= + + + +  

2 3 4
0 1 2 3 4

m m m my y x B y B y B y B= + + + +              (5)

which leads to the product
( )

( )
( ) ( )
( ) ( )
( )

0
0 0 0 1 0 1 0 0 1 1

2
0 2 0 2 0 0 2 2 1 1

3
0 3 0 3 0 0 3 3 1 2 1 2 1 1 2 2

4
0 4 0 4 0 0 4 4 1 3 1 3 1 1 3 3 2 2

5
1 4 1 4 1 1

( ( ) )

( ( ) )

( ( ) ( ) )

( ( ) ( ) )

(

.

( )

m

m

m

m

m

x y B x y B x x y y x y x y

B x x y y x y x y x y

B x x y y x y x y x x y y x y x y

B x x y y x y x y x x y y x y x y x y

B x x y y x y

= + + + − −

+ + + − − +

+ + + − − + + + − −

+ + + − − + + + − − +

+ + + − − ( )
( )( )( )
( ) ( )

4 4 2 3 2 3 2 2 3 3

6
2 4 2 4 2 2 4 4 3 3

7 8
3 4 3 4 3 3 4 4 4 4

( ) )

( ( )

 

)

m

m m

x y x x y y x y x y

B x x y y x y x y x y

B x x y y x y x y B x y

+ + + − −

+ + + − − +

+ + + − − +

   (6)

As can be observed, this expression has 5 + C(5, 2) = 
15 independent products that can be pre-computed, i.e.., 
the 5 simple products x0y0, x1y1, x2y2, x3y3, x4y4 and the 10 
combination products (x0 +x1)(y0 +y1), (x0 +x2)(y0 +y2), (x0 +x3)
(y0 +y3), (x0 +x4)(y0 +y4), (x1 +x2)(y1 + y2), (x1 +x3)(y1 +y3), (x1 
+x4)(y1 +y4), (x2 +x3)(y2 +y3), (x2 +x4)(y2 +y4), (x3 +x4)(y3 +y4).

If these products are found in a pre-computed table 
of m and (m + 1)-digit numbers, we would not need any 
multiplications at all, just 15 lookups, for any m, with n = 5m.

We would need to perform additions and subtractions, of 
course and there are 34 of them in the above example - this number 
of elementary operations depends, however, only upon n

m
.
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Memory Requirements
Typical RSA encryption algorithms use ∼ 1000-digit 

base-10 composite numbers that are the product of five-
hundred-digit primes. If one were to attack the problem 
by pre-computing keys, i.e., pre-multiplying pairs of five-
hundred-digit primes (n = 500 ∼ 29) and storing the results 
of multiplying all possible 6-digit numbers (m = 6 ∼ 23), one 
has a complexity 2

8 42 005 ,5n n
m

∼ ∼= , which is worse than the new ∼ 
n log2n ∼ 4500 complexity [8], albeit the fact that the newer 
approach also has multipliers, which we have not accounted 
for. If we use the hybrid method (Karatsuba followed by look-
up of 6-digit products), the complexity is ∼ 36 × 6 ∼ 4200, 
which is arguably much better (no pre-factors missing) than 
even the n log2n algorithms. We would need to store ∼ 1012 
twelve-digit numbers, roughly 20 TB of memory, which is a 
reasonable size.

Conclusion
This paper presents a rapid pre-computed approach 

to speeding up multiplications. Though one needs to pre-
compute and store all possible m-digit multiplications, one 
can compute the products of two integers with number of 
digits equal to any integer times m in time proportional to 
the number of digits (times the afore-mentioned integer). 
Memory is cheaper than CPU-speed, so this is a method that 
can be exploited in other (for instance signal-processing) 
situations to speed up intensive calculations too.

Useful conversations are acknowledged with Dr. B. 
Kumar. As this paper was being prepared, an article about 
using pre-stored calculations was released, where the 
Eratosthenes sieve was sped up in calculation complexity 
[9,10].
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Fraction of Karatsuba
100 digit binary numbers, stopping early followed by look-up
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Figure 1: Plot of the Efficiency of cutting off Karatsuba early.
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