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Abstract
Cryptosporidium is an apicomplexan zoonotic pathogen primary 

causing diarrhea in vertebrate hosts notably bovines and humans. Here, 
we characterized Cryptosporidium isolates by using the GP60 gene 
fragment of C. parvum to observe the dynamics of cryptosporidiosis 
transmission in dairy calves from two distant biogeographical regions 
of Chile (Metropolitan and Los Rios Regions). We collected 72 fecal 
samples from diarrheic calves screening the parasite carried out 
microscopy of an acid-fast staining smear and molecular characterization 
employing PCR to directly detect the Sanger GP60 C. parvum subtype 
and simultaneously in one selected sample the NGS profile of the GP60 
same gene fragment to determine same and/or others Cryptosporidium 
subtypes. The IIaA15G2R1 subtype was present in the 100% of the 
bovine fecal samples studied from Los Rios Region. Along with this 
same subtype, another two were observed in the Metropolitan Region, 
IIaA17G2R1 and IIaA17G4R1. The NGS analysis of a single selected GP60 
PCR amplicon of one selected sample of our study showed similarly the 
Sanger sequencing determined subtype, the IIaA17G4R1 in 90% of 
readable sequences observed. By using this approach another multiple 
low frequency IIa subtypes of C. parvum were observed confirming that 
in an infected host multiple subtypes of the parasite can be present. 
Cryptosporidiosis in these dairy farms calves in Chile is produced by 
C. parvum limited number of subtypes, being IIaA15G2R1 the most 
frequent. The IIa subtype family is considered prevalent in calves 
in South America. Subtypes IIaA17G2R1 and IIaA17G4R1 had been 
worldwide distribution. As all C. parvum subtypes observed in calves 
in Chile were isolated from diarrheic animals, so, it can be possible to 
relate its presence with the pathogenic role in the bovine host and with 
a potential digestive disease risk for humans.

Keywords: Cryptosporidium, GP60; Dairy calves, Epidemiology, 
Diarrhea, Chile.

Abbreviations: GP60: 60 kDa glycoprotein; SSU-rDNA: Small Subunit 
Ribosomal DNA; PCR: Polymerase Chain Reaction; MR: Metropolitan 
Region; LRR: Los Rios Region; NGS: Next Generation Sequencing; 
mZN: Modified Ziehl-Neelsen; COX1: Cyclooxigenase 1; BLAST: Basic 
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Local Alignment Search Tool; NCBI: National Center for 
Biotechnology Information.

Introduction
Cryptosporidium parvum (Protozoan, Apicomplexa) is 

the most important cause of eukaryotic unicelular pathogen 
diarrhea in calves worldwide and is one of the two leading 
causes of human cryptosporidiosis [1,2]. Acute diarrheic 
calves present lethargy, anorexia, fever accompanied by 
dehydration, collapse and death [3]. Furthermore, infection 
of dairy heifers results in less milk production due to 
nutrition complications such as nutrient malabsorption [4]. 
Bovine meat production is also impacted as cryptosporidiosis 
in pre-weaned calves results in lower average daily gain 
weight [5]. Cryptosporidium oocysts excreted by infected 
calves can contaminate the environment, facilitating 
transmission of the disease by fecal-oral route not only 
between animals but also to humans [6]. Indeed, cattle is 
the most important source of zoonotic Cryptosporidium 
[7]. Contaminated watersheds are an important source 
of Cryptosporidium infection to other animals as well as 
to humans, and especially in developing countries where 
irrigation systems include rivers with scarce infrastructure 
for preventing fecal contamination [8-10]. Molecular 
identification of C. parvum isolates throughout GP60 based 
approach has been used widely to study the structure of the 
parasite populations and its dynamics of transmission in 
calves [11]. The GP60 gene has nucleotide variation greater 
than the average in the genome of Cryptosporidium and its 
alleles are used to define groups (subtype families) among 
the different isolates [12]. Calves are frequently infected by 
the C. parvum IIa subtype family. A subtype, IIaA15G2R1 
is considered highly pathogenic and is the most common 
infecting calves worldwide, meanwhile in Europe, Asia and 
Egypt the IId subtype family is mostly observed infecting 
these animals [13,14]. The main objective of the present 
work was to molecularly study the epidemiology of bovine 
cryptosporidiosis in Chile, by characterizing the GP60 
subtypes of C. parvum infecting diarrheic dairy calves from 
two geographically distinct dairy zones.

Materials and Methods
Thirty-six (36) diarrheic calves, less than 30 days old, 

from two dairy farms located in Melipilla and El Monte 
counties in the Metropolitan Region (MR) 33°27′S 70°40′W, 
were selected for fecal sample collection. Another similar 
set of 36 calves were studied from dairy farms located 
in Mariquina, Rio Bueno and Valdivia counties in the Los 
Rios Region (LRR) 39°48′50″S 73°14′45″W. Sampling 
was performed directly from the rectum of the animals 
using a 50 ml conical centrifuge tubes (Thermo Fisher Inc., 
Pittsburgh, PA, USA) and preserved in 70% ethanol until 
processing. Fecal samples were centrifuged at 1,500 x g for 
5 min, aliquots of 1 ml of sedimented slurry transferred to 
1,5 ml microcentrifuge tubes and stored at 4ºC. Samples 
were smeared on glass slides, stained with modified Ziehl-
Neelsen (mZN) and examined under optic microscope 
at 100X magnification. DNA was extracted from the 
Cryptosporidium positive samples with a commercial kit (ZR 
Fecal DNA MiniPrep ®, Zymo Research, CA, USA) following 

the manufacturer’s protocols. All DNA samples were tested 
by PCR with SSU-rDNA Cryptosporidium specific primers 
and COX1 bovine specific primers to rule out PCR inhibitory 
activity [15,16]. The DNA samples positive in both tests were 
then submitted to PCR for amplification of the GP60 gene, 
using 2.5 μl of extracted DNA and the primers gp15-ATG (5’ 
ATG AGA TTG TCG CTC ATT ATC 3’) and gp15-STOP (5’ TTA 
CAA CAC GAA TAA GGC TGC 3’), resulting in an expected 
amplicon of about 1,000 bp [15]. For determining the 
species and subtype family of each isolate, each consensus 
sequences were aligned using BLAST (Basic Local Alignment 
Search Tool) to sequences deposited in Genbank (NCBI). 
Sequences from each sample were subtyping by using the 
methodology proposed by Sulaiman et al. (2005) [17]. Next 
Generation Sequence (NGS) analysis of a single selected DNA 
sample were conducted in the Ion Torrent PGM platform 
using Ion 314™ Chip (Thermo Fisher, CA, US), using a 
third-party sequencing service. After filtering and quality 
trimming, the resulting FASTA formatted sequences were 
analyzed with the FASTX toolkit integrated into the online 
data analysis platform Galaxy for determining the number of 
TCA/TCG repeats determined using the collapse sequences 
option for parasite subtyping [18].

Results
Fifty percent (50%) of the samples presented 

microscopically Cryptosporidium oocysts, 18 samples from 
MR and 18 samples from LRR. From these samples, the genus 
specific SSU-rDNA PCR for Cryptosporidium was positive in 
29 isolates and only 15 (51.7%) were GP60 positive PCR, of 
which 5 were from MR and 10 from LLR. Three C. parvum 
subtypes belonging to IIa subtype family were observed in 
the MR: IIaA15G2R1, IIaA17G2R1 and IIaA17G4R1. In the 
LRR, the subtype IIaA15G2R1 was observed in the 100% of 
the bovine’s parasite samples (Table 1). NGS analysis of a 
single selected DNA sample of our study showed similarly 
the predominant Sanger IIaA17G4R1 GP60 subtype in 90% 
of the readable sequences along with others less frequent 
subtypes (Table 2).

Discussion
Of the 29 SSU-rDNA PCR Cryptosporidium positive 

samples only 51.7% were positive to GP60. The GP60 gene 
has a unique copy in the Cryptosporidium genome instead 
of SSU-rDNA gene that possess five copies making it a less 

Region County N° Subtype

MR

El Monte 2 IIaA15G2R1

El Monte 1 IIaA17G2R1

El Monte 1 IIaA17G4R1

Melipilla 1 IIaA15G2R1

LRR

Rio Bueno 6 IIaA15G2R1

Valdivia 2 IIaA15G2R1

Mariquina 2 IIaA15G2R1

Total 15

Table 1: Frequency of GP60 subtypes found in the two regions and respectively 
counties of Chile.
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sensitive in a PCR assay [19,20]. Pre-weaning cattle are 
the most susceptible to infection especially by C. parvum, 
but it has been observed other parasites species such as 
C. bovis, C. ryanae and C. andersoni that could explain the 
lower number of positive simples by PCR in relation to the 
microscopy morphological tests [21]. The GP60 amplicons 
were sequenced all belonging to IIa subtype family (Table 
1). Interestingly, in the LRR, the subtype IIaA15G2R1 was 
observed in the 100% of the samples. C. parvum subtype 
IIa predominates in calves in South America, in countries 
such as Argentina, Colombia and Brazil [22-24]. In Chile, 
IIaA15G2R1 predominates in the 86.6% of the samples 
which agrees with data from other countries studies. Feng 
et al. described that the IIaA15G2R1 subtype has a high 
rate of transmissibility as an adaptive characteristic [25]. 
IIaA17G2R1 has also been described in cattle in Europe 
and USA. The subtype IIaA17G4R1 has also been observed 
in Colombia, from diarrheic calves [24]. Although subtype 
diversity was observed in the samples, the predominant 
subtype was IIaA15G2R1 in both geographical regions of 
Chile, suggesting its highly infective characteristic. Most of 
the infections in neonatal diarrheic calves in LRR can be 
consequence of the biogeographic characteristics of the 
region, with large number of surface watercourses [26,27]. 
Interestingly, the NGS analysis of a single selected DNA 
sample of our study showed similarly the predominant 
IIaA17G4R1 GP60 subtype in 90% of the readable sequences 
along with others les frequent subtypes. This result is 
presented confirming by using the NGS approach that 
multiple subtypes of C. parvum are present naturally in an 
infected host as reported before [28].

Conclusion
A general conclusion is that in two different 

biogeographical regions of Chile, cryptosporidiosis in 
neonatal calves is caused by C. parvum of limited number 
of subtypes. The main parasite subtype is IIaA15G2R1, 
which is the subtype in cattle mostly reported worldwide. 
The presence of C. parvum in Chile is a potential risk of 
infection for humans, especially for dairy farm workers 
and veterinarians, who are in most contact with infected 
animals. This study contributes to a better understanding of 
the dynamics of cryptosporidiosis transmission in Chile also 
in South America and globally.
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